Have We Reached a New Normal?: Nutrient Cycling and Bloom Dynamics in the Northern Indian River Lagoon

Josh Papacek^{*1}, Edward Phlips², Margaret Lasi³ & Patrick Inglett¹

¹Soil & Water Sciences, University of Florida; ²Department of Fisheries & Aquatic Sciences, University of Florida;

³St. Johns River Water Management District

*jrpapacek@ufl.edu 🧡 @

@josh_papacek

HARMFUL ALGAL BLOOMS (HABs)

World Hypoxic and Eutrophic Coastal Areas

LANDSAT images from Ali Simpson (SJRWMD)

RESEARCH QUESTIONS

Pre-2011

Post-2011

RESEARCH QUESTIONS

- Are shifts in nutrients linked to HABs in the IRL?
- Are there specific nutrients which HABs in the IRL prefer?

CULTURE 15-N UPTAKE

 Cultures spiked with 15N substrates

CULTURE 15-N UPTAKE

- Cultures spiked with 15N substrates
- Superbloom taxa prefer reduced N
- Able to use organic N

 $\alpha = V_{max} : K_s$

 $V = \frac{V_{max} \times S}{K_{s} + S}$

 $NH_4^+ > AA = urea >>> NO_3^-$

Superbloom Euk. Culture

→ NH4 - NO3 - Urea - AA

NUTRIENT TRENDS IN THE IRL

"MICROBIAL LOOP"

- Internal regeneration of reduced inorg. & org. N
- Favors small celledphytoplankton

Glibert et al. 2016 (adapted from Dudgale & Goering 1967)

NUTRIENT TRENDS IN THE IRL

NUTRIENT TRENDS IN THE IRL

"MICROBIAL LOOP"

- Internal regeneration of reduced inorg. & org. N
- Favors small celledphytoplankton
- $\uparrow P = N_2$ fixation?

Glibert et al. 2016 (adapted from Dudgale & Goering 1967)

Water Column ARA

- Samples from 9 sites in IRL (ML, NIR, BR)
- Approximately bi-monthly Sep. 2014-June 2016

Water Column ARA

- Samples from 9 sites in IRL (ML, NIR, BR)
- Approximately bi-monthly Sep. 2014-June 2016
- Filtered & placed in flasks with site water filtrate
- Injected with C₂H₂ gas & incubated under light (100-200 uE) and dark
- Production of C₂H₄ measured & scaled up to daily rate (12:12 hr)

ARA Results

- Significant seasonal effect; rates highest in August
- Largely consistent across basins
- No light vs. dark effect

Effect	D.f.	F Ratio	p<
Month	7	333.98	0.0001
Basin	2	2.55	n.s.
Treatment	1	3.13	n.s.

ARA Results

- Significant seasonal effect; rates highest in August
- Largely consistent across basins
- No light vs. dark effect

Effect	D.f.	F Ratio	p<
Month	7	333.98	0.0001
Basin	2	2.55	n.s.
Treatment	1	3.13	n.s.

Potential Controls

- + correlation to temp & picocyano counts
- correlation to available N, N:P ratios

Calculated daily rates vs. select variables

Variable	Spearman p	p <
TN:TP	-0.46	0.001
NH ₄ ⁺ (μM)	-0.32	0.05
NO ₃ ⁻ (μM)	0.09	n.s.
DIN:TDP	-0.50	0.0001
TDN:TDP	-0.48	0.0001
Chl α (μg L ⁻¹)	0.23	n.s.
Salinity (psu)	-0.11	n.s.
DO (mg/L)	-0.12	n.s.
Temp (°C)	0.41	0.005
Pico cell count (cells mL ⁻¹)	0.46	0.005

Potential Controls

- + correlation to temp & picocyano counts
- correlation to available N, N:P ratios
- Highly related to TDP conc.

CONCLUSIONS & LINGERING QUESTIONS

- Recent HABs in the IRL prefer NH₄⁺ & DON
- Reduced N > oxidized N in IRL
- ↑ P (↓N:P) since 2010
- BNF contributes to available N pool for HABs
- "Internal" N accounting undervalued in budgets
- Have we reached a "new normal"?

ACKNOWLEDGEMENTS

- Funding from SJRWMD, SWSD, WBL
- Lab and field assistance from:
 - Xiaolin Liao, Katelyn Foster, Sophia Carmen (WBL)
 - Kathryn Curtis (SWSD)
 - Leslie Landauer, Jean Lockwood, Susan Badylak & others (Phlips Lab)

